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1. INTRODUCTION

Let {Xt, t=0, +1, +2,...) be a discrete time series, i.e. the X 's
are a collection of random variables with finite second moments. In
analyzing time series data one usually assumes that X is covariance stationary,
i.e. the mean value function m = E[Xt] is a constant and that the covariance
function K(s,t) = Cov[xs,xt] is only a function of |s-t|. Unfortunately,
such an assumption rules out a wide class of interesting series. For
example, Figure 1 is a graph of levels of Luteinizing hormone (LH) in a
cow measured at ten minute intervals for 24 hours. It is difficult to
imagine that this data comes from a covariance stationary time series. Even
if it were the usual methods of time series analysis (correlation and spectral
analysis) would not address the questions the scientist would be interested
in, namely the intensity of episodic occurrence, the average heighth of
episodes, and the rate at which the hormone level returns to its baseline
value.

The features that distinguish this data (and other data in a wide
variety of areas such as river flows, pollution levels, or chemical manu-
facturing processes) are the random occurrence of large surges followed by
an exponential return to the low relatively constant baseline values. A
model which reflects such behavior was suggested by Parzen (1962b). We
assume that the process started at some time zero and let the number of
episodes, N(t), from time O to time t, t > O, be a Poisson process with
intensity parameter A, i.e. for any n > 1 and any times 0 f_tl Tty < ... <tn,
N(tn) - N(tn_l),..., N(tz) - N(tl) are independent, Poisson distributed

random variables with means X(tn - tn_l),..., A(t2 - tl). Then the value

Xt of the process at time t is assumed to be of the form




(1.1)

where the ym's are iid random variables with mean uy and variance o;, while
Tn is the time of occurrence of the mth episode. Thus the time series consists
of the sum of a random number of exponentially decaying spikes where the
number of such spikes is governed by A, their heighth by uy, and the rate
of decay by vy. The aim of this paper is to provide good estimators of these
parameters. In section two we derive the properties of the model (1.1) and
in section three we find consistent, asymptotically normal estimators of A,
uy, and y. In section three we will assume that y is large enough relative
to A that one spike decays quickly enough before the occurrence of the next so
that they do not overlap. This restriction seems reasonable for the type of
data sets we are interested in. We also will assume that the baseline value
is essentially constant. 1In many episodic time series the variation in the
baseline is of importance also. Any method of analyzing such series would
have to be iterative in nature, first considering the baseline and then the
episodes. In this paper we consider only the episodes and leave the general
problem to future research.

2. PROPERTIES OF THE MODEL

From (1.1) we can write

N(e1) ~(t+1-1 ) /Y
X = e m
t+l m
m=1

N(t+1)

R N AR (e ) /Y
m m
=1 w=N(t)+1
=Xt en




1/vy

where p = e

and the et's are 11d random variables since they are a

function of N(+) for the nonoverlapping time intervals (0,1}, (1,2], etc.

Further, et+1

of an autoregressive process of order one but as we shall see it 1is not
covariance stationary. We note that for 0 < y < =, we have 0 < p < 1.
Now for a poisson process with intensity A we have that the arrival

times Tysees Ty in the interval [s,t] given that N(t)-N(s) = K are iid

uniformly distributed on the integyal [s,t]. Thus

N(t) : é-(t—r )/y

Ele.] = Byieyon(e-1) E[Fu(t-nﬂ

-(t-1_)/
= EN(e)-N(t-1) [:K E(Y) Eyqpo1 e m Y)]

= EN(t)-N(t-l) [%uy Y(l—e'I/Yi]

= . y(-e 1M ,
where Eu(t—l t) denotes expectation with respect to the Uniform (t-1,t) pdf.
’
Further, T
HE
: -2(t-1) /¥
E|e2|N(t)-N(t-1) = K| = K E(y2)E (e )
[:t m’ u(t-1,t) Accession For
NTIS GRAXI X
—(t- DTIC TAB 0
+ K(k-1) [E(y. N3 E (e (¢ T)/Y) 2 Unannounced M
m u(t-1,t) . C
Justification
e K(u24.2y X -2/y 2 y2(1-e~1/7y2 By
K(uy+oy) 7 (1-e 777) + K(K-1) ug y*(-e 71 H% | Distribution/

and so

21 = 2 2y X (1 "2/ 2 2¢1_a"1/Yy ;2
E[etl A(oy + uy) 2 (1-e ) + ue oy (1-e ) A R

is independent of XB for 8 <t + 1. Thus X is in the form

Ym B IN(E)-N(t-1) = é]

- —eed
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t t-1 t
=p(pX _, + € _4) + e
) t-1 )
t .
=pX + ) p’¢€ .
o 4=0 t-j
Thus
t-1
E(X,] = p" E[X_] + Au y(-e/7y T} o3
y 420
. - o t/Y
(o} E[Xo] + Xuyy(l e ) .
Also, t+s-1
CoviX ,X . 1= Cov[pt X + tfl pje pt+sx + ) pje ]
t’ tt+s (o) t-3° o t+s-]
j=0 j=0
t-1
= 92t+BVar[X ] + Var[e ] ps Z pzj
o t
j=0
=07 var[x 1 + 26} (1-e~2/y 0%(1-02%)/(1-02)
- pltte Var[X_] + A6% 0°(-p2%
r-r-‘: o ’ - T . .“

b ahich gives

and

Vare ] = A6 (1-e"2/Y)
where 6 = p2 + o2 ,
y y

Now to find the moments of Xt we write

X = pX + €

2

- t Y 2t
Var[xt] P Var[xo] + AGZ (1-0°") .

Thus X is indeed nonstationary. However, if one assumes that xo has finite

mean and variance and then lets t go to infinity, we have




1im E[X ] = Au ¥ (2.1)
t—>0 ¢ y

o 28y 8/Y
1lim Cov[xt, xt+8] AGE e
t—>w
m Var[X,] = 26§ (2.2)
t—o

and X is asymptotically covariance stationary (see Parzen (1962a)). Note

i D e e 4

that letting t go to infinity is merely saying that we are observing the

,‘I process after it has been going on for a long time.
.
'_. 3. CONDITIONAL LEAST SQUARES ESTIMATORS OF DECAY RATE AND AVERAGE HEIGHT

& Since Xt is an asymptototically stationary autoregressive process of

order one, we can obtain consistent estimates p, y = -1/log(p), and 02

of p, vy, and 02 = Var[et] by choosing 5 as the value of p minimizing

T-1
(o) = J (X - B - p(X, - D12 (3.1
t=1

= and letting aé = S(p)/(T-1) .
h Unfortunately this procedure gives no information about A and "y'
However, it does motivate the use of conditional least squares.

1f {Zt’ t=0,+1,...} is an ordinary Caussian autoregressive process of

order one, i.e. Zt = a Zt-l + e, where E(et) = 0 and Cov(et,es) = 6:-302
for the Kronecker delta fu:c;ion §,» then E[Zt| Zt—l""’ZI] =azZ ;-

Thus the minimization of Z { Zt_’_1 - a Zt}2 can be thought of as minimizing
t=1

the sum of squares of Zt+1 from its conditional expectation given all previous
Z's. 1f Z is not Gaussian, the procedure provides the coefficients of the
best linear approximation to this conditional expectation. In our situation
we need to actually incorporate the conditional expectation into the function

to be minimized so that estimators of A and uy can be obtained. Thus we

next derive this conditional expectation.

|
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Since xt+1 18 only a function of Xt and €eq1? it 1s Markov and

E[xt+1l x )"')xt] = E[xt+1| xt]o Further

E[xtﬂ(xt] = *r:[pxt + et+1| xt]

= pX +Ele . ]xt] .

But ¢ is independent of Xt so that

t+l

E[eﬁ_llxt] = Ele,,,] = Auyy(l-e
Thus the conditional least squares estimators oka,uy, and Y are chosen
to minimize

T-1
21 {xtﬂ - e-lh X -Auyy(l—e-]'/y)}2 .
ts

Unfortunately A and uy only enter this function in their product and thus
they are not identifiable. However, we do have another estimator of A 1if
we can count how many episodes occur in our data. Thus we will assume this
is true and let i = K/T where K 1s the number of episodes in data xl,...,x.r.

Then we let B = )‘uy and find vy and 8 to minimize

T-1
S(v,8) = J (X, -e/Yx -sya-e1My¥ | (3.2)
t+1 t
t=1
To find the properties of these estimators we have the following Theorem,

adapted in a straightforward way from Theorem 3.2 of Klimko and Nelson (1978).

Theorem

The estimators y, 8 obtained by minimizing ( 3.2) are consistent and

g

vhere og - Var[et] = J\Gg- (l-e-zly). and

Wy >

:;) 2> §,(0,02 v
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v =| 2 n((%éi +82) + 2abBy + b? acBy + be ’
e2?
acBy + be
with
a=y %Y, b2yt e Y1y
c = y(l-e—lly) ‘

Proof Theorem 3.2 in Klimko and Nelson (1978) shows that under certain
regularity conditions that if a stochastic process Xt is Markov and
asymptotically stationary and g(g) = E[Xt+1 IXt] is a function of parameters

6 = (61,...,er)T.then the conditional least squares estimators § of g , based

on observations X ..,Xr, satisfy

1°°
A (6- 0 — N (0, viv ™
where the (j,k)th elements of W and V are given by

= - 2 OE[Xpyy[Xe) RE[Xpy [X,]
Wik E[{xt+1 E[X 4y X 1}

20 26y
and
FE[Xe41 |Xe]  E[Xpyp [Xe)
V., =E ’
jk 39j aek

j,k=1,...,r. The unconditional expectations in these expressions are the
asymptotic expectations.

In our situation,

aE[xt+1|xt] = aX¢.1 + b (3.3)
oY

3E[Xe+1 X ¢l -
o - ¢ = ya-eYM (3.4)

where a = y_ze-l/Y and b = g[1 -'y~1e-1/Y (1+y)] . Further,

2 aml a o o o - P L, Y

]



‘y'ﬁn:ﬂ

{x - E[X Ix ]}2 = {pX + -~ 5X - (1- ‘1/7)}2
t+l t+l'7t e t €t+1 P t By e

2

which 1s independent of BE(X ., |X,1/3y and 3E[X |X.1/38. Then

t+l

W= ogv and thus v'lwv'l = azv-l. Now from (2.1), (2.2), (3.3), and (3.4),

V22 = E[CZ] = Cz »
vlz = V21 = E[acXt_l + bC]
= acfy + be R
= g 2 2
Vll a E[Xt_ll + 2 ab E[Xt_ll +b
2, (A8 2 2
= a‘y (E— + B4) + 2abBy + b
since E[X2 .] = Var [X. .] + (E[X. DZ = 2 64 22,2 y = y&E 452)
t-1 t-1 t-1 2 y 2 .

To minimize the nonlinear function ( 3.2) we can use initial values
;* from (3.1 ) and é* = i;; where ; = K/T as above and ;; is the
average of the heighths observed in the time interval containing the
start of an episode. Thus ;; will be biased downward but é* should suffice
as a starting value for 8.

To ébtain asymptotically correct confidence intervals for y and B we

can evaluate og vl with ci from (3.1 ) and A, L O and

S = aé/(x%{l-e-zlv) replacing aé, A, UY’ v, and §.

To obtain confidence intervals for My We can use the facts that
"P -~ ~
My = /), that A+\ and that 8 is asymptotically normal. Thus My is
asymptotically normal with asymptotic variance 1/)2 times the asymptotic

variance of 8.
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we 1llustrate these ideas in the next section.

4, A WORKED EXAMPLE

In table 1 we give the values of LH in a cow at 10 minute intervals for
24 hours. We note the occurrence of K=8 episodes in the T=144 points with
the episodes occurring during the 13th, 42nd, 58th, 69th, 89th, 100th, 115th,
and 132 nd time intervals. Thus we esﬁimate A by A = K/T = 8/144 = .056
occurrences per 10 minutes or 8 per day and using the Poissoness of K, we
get an exact 90% confidence interval for AT as the interval [4.0, 14.5].

The assumption of Poisson occurrences can also be tested by (see Parzen

(1962), p. 141) comparing the statistic

~ KT _ 618 - 576
2= ) TYw-3 = —1i7.58 -36
m=1
KT?
12

with the critical values of the N(0, 1). Thus the LH data is clearly
consistent with the hypothesis of Poisson occurrences.

The initial estimator of y given by the ordinary autoregressive analysis

-~

*
is y = 2.50 which is consistent with the observation that it takes about

8 or 10 intervals for the episode to decay back to the baseline. The initial
~% ~k Ak

estimator uy = 20.5 and thus 8 = Auy

2XSSQ to minimize (3.2 ), we obtain y = 2.50 and B = 1.90 and thus

-~ A*
uy = 33.93, a considerable increase over u ..

1.14. Then using the IMSL Subroutine

The estimator 02 of 02 = X (l-e 2/Y) obtained from the autoregressive
analysis is oz = 29,57, from which we obtain P =02/[A7/2(1-e-2/7)] = 386.59.

Then substituting oi, 6 A, Y: and B into o and V, we have that y and 8 are

approximately normal with means y and 8 and variances .00153 and ,.00123

T s T W s 8




respectively, from which we have asymptotic 95% confidence intervals
(2.42, 2.58) and (1.83,1.97) for y and B respectively. Finally the asymptotic
variance of uy is approximately Var (B)/A% = .39 and thus an asymptotic 957

confidence interval for Uy is (32.67, 35.19).
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Table 1.

No. Val. No. Val.
1l 8 25 7
2 7 26 7
3 7 27 7
4 8 28 7
5 8 29 6
6 7 30 6
7 5 31 6
8 7 32 5
9 6 33 4

10 6 34 4

11 6 35 6

12 7 36 4

13 22 37 6

14 36 38 7

15 24 39 5

16 19 40 6

17 17 41 6

18 13 42 22

19 12 43 36

20 13 44 27

21 9 45 22

22 9 46 18

23 9 47 15

24 8 48 14

FIGURE 1.
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No.

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

Hormone Levels
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Val.

11
10
10
10

8

9

7

8
10
28
25
20
18
16
13
12
11

9
11

9
26
29
24
18

LH Levels Every 10 Minutes for 24 Hours

No. Val.
73 15
74 13
75 12
76 10
77 9
78 9
79 9
80 9
81 8
82 7
83 7
84 8
85 7
86 7
87 8
88 6
89 42
90 26
91 21
92 18
93 19
94 13
95 11
96 12

No.

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

Val.

No. Val.
121 10
122 11
123 10
124 8
125 8
126 8
127 9
128 8
129 8
130 8
131 8
132 14
133 25
134 20
135 16
136 15
137 11
138 11
139 10
140 10
141 13
142 11
143 11
144 10

1 9 17 25 33 41 49 57 65 7
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3 81 89 97 105 113 121 129 137 145







